Curated from MIT Technology Review — Here’s what matters right now:
In December 1947, three physicists at Bell Telephone Laboratories—John Bardeen, William Shockley, and Walter Brattain—built a compact electronic device using thin gold wires and a piece of germanium, a material known as a semiconductor. Their invention, later named the transistor (for which they were awarded the Nobel Prize in 1956 ), could amplify and switch electrical signals, marking a dramatic departure from the bulky and fragile vacuum tubes that had powered electronics until then. Its inventors weren’t chasing a specific product. They were asking fundamental questions about how electrons behave in semiconductors, experimenting with surface states and electron mobility in germanium crystals. Over months of trial and refinement, they combined theoretical insights from quantum mechanics with hands-on experimentation in solid-state physics—work many might have dismissed as too basic, academic, or unprofitable. Their efforts culminated in a moment that now marks the dawn of the information age. Transistors don’t usually get the credit they deserve, yet they are the bedrock of every smartphone, computer, satellite, MRI scanner, GPS system, and artificial-intelligence platform we use today. With their ability to modulate (and route) electrical current at astonishing speeds, transistors make modern and future computing and electronics possible. This breakthrough did not emerge from a business plan or product pitch. It arose from open-ended, curiosity-driven research and enabling development, supported by an institution that saw value in exploring the unknown. It took years of trial and error, collaborations across disciplines, and a deep belief that understanding nature—even without a guaranteed payoff—was worth the effort. After the first successful demonstration in late 1947, the invention of the transistor remained confidential while Bell Labs filed patent applications and continued development. It was publicly announced at a press conference on June 30, 1948, in New York City. The scientific explanation followed in a seminal paper published in the journal Physical Review . How do they work? At their core, transistors are made of semiconductors—materials like germanium and, later, silicon—that can either conduct or resist electricity depending on subtle manipulations of their structure and charge. In a typical transistor, a small voltage applied to one part of the device (the gate) either allows or blocks the electric current flowing through another part (the channel). It’s this simple control mechanism, scaled up billions of times, that lets your phone run apps, your laptop render images, and your search engine return answers in milliseconds. Though early devices used germanium, researchers soon discovered that silicon—more thermally stable, moisture resistant, and far more abundant—was better suited for industrial production. By the late 1950s, the transition to silicon was underway, making possible the development of integrated circuits
Next step: Stay ahead with trusted tech. See our store for scanners, detectors, and privacy-first accessories.
Original reporting: MIT Technology Review