From pilot to scale: Making agentic AI work in health care

From pilot to scale: Making agentic AI work in health care

Curated from MIT Technology Review — Here’s what matters right now:

Over the past 20 years building advanced AI systems—from academic labs to enterprise deployments—I’ve witnessed AI’s waves of success rise and fall. My journey began during the “AI Winter,” when billions were invested in expert systems that ultimately underdelivered. Flash forward to today: large language models (LLMs) represent a quantum leap forward, but their prompt-based adoption is similarly overhyped, as it’s essentially a rule-based approach disguised in natural language. At Ensemble, the leading revenue cycle management (RCM) company for hospitals, we focus on overcoming model limitations by investing in what we believe is the next step in AI evolution: grounding LLMs in facts and logic through neuro-symbolic AI. Our in-house AI incubator pairs elite AI researchers with health-care experts to develop agentic systems powered by a neuro-symbolic AI framework. This bridges LLMs’ intuitive power with the precision of symbolic representation and reasoning. Overcoming LLM limitations LLMs excel at understanding nuanced context, performing instinctive reasoning, and generating human-like interactions, making them ideal for agentic tools to then interpret intricate data and communicate effectively. Yet in a domain like health care where compliance, accuracy, and adherence to regulatory standards are non-negotiable—and where a wealth of structured resources like taxonomies, rules, and clinical guidelines define the landscape—symbolic AI is indispensable. By fusing LLMs and reinforcement learning with structured knowledge bases and clinical logic, our hybrid architecture delivers more than just intelligent automation—it minimizes hallucinations, expands reasoning capabilities, and ensures every decision is grounded in established guidelines and enforceable guardrails. Creating a successful agentic AI strategy Ensemble’s agentic AI approach includes three core pillars: 1. High-fidelity data sets: By managing revenue operations for hundreds of hospitals nationwide, Ensemble has unparallelled access to one of the most robust administrative datasets in health care. The team has decades of data aggregation, cleansing, and harmonization efforts, providing an exceptional environment to develop advanced applications. To power our agentic systems, we’ve harmonized more than 2 petabytes of longitudinal claims data, 80,000 denial audit letters, and 80 million annual transactions mapped to industry-leading outcomes. This data fuels our end-to-end intelligence engine, EIQ, providing structured, context-rich data pipelines spanning across the 600-plus steps of revenue operations. 2. Collaborative domain expertise: Partnering with revenue cycle domain experts at each step of innovation, our AI scientists benefit from direct collaboration with in-house RCM experts, clinical ontologists, and clinical data labeling teams. Together, they architect nuanced use cases that account for regulatory constraints, evolving payer-specific logic and the complexity of revenue cy

Next step: Stay ahead with trusted tech. See our store for scanners, detectors, and privacy-first accessories.

Original reporting: MIT Technology Review

Back to blog

Leave a comment

Please note, comments need to be approved before they are published.